VARIATIONAL APPROACH TO THE CALCULATION
OF A HIGH-FREQUENCY INDUCTION DISCHARGE

M. O. Rozovskii UDC 533.9

We discuss a result, obtained in [1], that contradicts experiments. It is shown that the rea-
son for the contradiction involves the nonapplicability of the principle of minimum entropy
production to thermodynamical systems situated in an alternating electromagnetic field. For
stationary regimes of high-frequency discharges we formulate a variational problem that is
equivalent to the original system of equations. We give a solution of this problem in the "chan-
nel model" approximation of a discharge with and without taking account of radiation losses.

A high-frequency induction discharge at high pressure is governed by Maxwell's system of differential
equations and the heat conduction equations (see, for instance, [2]). In [2-4] this system of equations has
been integrated directly under specific assumptions concerning the geometry of the discharge and the char-
acter of the heat transfer. Attempts at the calculation of stationary regimes of a high-frequency discharge
by a procedure based on the minimum-power variational principle, in analogy with the "channel model" of
the column of an arc discharge [6], has been undertaken in [1, 5]. In [5], however, mathematical details of
the method applied are lacking. From the results of [1] the conclusion follows that the existence of a high-
frequency discharge with a thin skin-layer is impossible, which contradicts the experimental facts. This
circumstance was noted in [7]. In the discussion of this contradiction in [8] the question was not resolved,
as will become evident in what follows. Therefore, it is of interest to clarify the reason for the contradic-
tion in {1] and to make a judgment as to the possibility of a variational approach to the calculation of sta-
tionary regimes of a high-frequency induction discharge.

1. In [1] the minimum-power variational principle has been employed for the calculation of the "chan-
nel model" of a high-frequency discharge: the power P dissipated in a stationary discharge is a minimum

8P =0 .1

The relationship of condition (1.1) to the thermodynamical principle of minimum entropy production,
allegedly established in [9] for an arc discharge, has served as the basis for the application of (1.1) to a
high-frequency discharge. The question whether such a relationship exists has been discussed in [10], where
it was shown that no such general principle of minimum power for an arc discharge exists, though in cer-
tain cases the application of the variational condition (1.1) can be justified. In particular, this condition can
be used for the construction of the channel model of the column of an arc discharge. If we now postulate
the validity of the principle of minimum entropy production for a high-frequency discharge, then it would
appearthat throughconsiderations similar to those in [10] we can arrive at a conclusion as to the validity
of the calculation of the channel model of a high-frequency discharge based on condition (1.1). However, it
is at the same time necessary to take account of the following circumstance. In the calculation of the chan-
nel model of a discharge an important initial relationship is the condition for the overall energy balance
in the discharge

P=N €.2)
where N is the energy loss due to heat conduction.

If condition (1,1) holds, then from (1.2) it follows that
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It can be shown {1] that for a unit length of the channel
N = 200, (In R//ro) ™ 1.4)

where 6 (T)is a fqnction “having a one-to-one relationship with the thermal conductivity of the working
gas

T .
o = rydr,  0,=0(T) (1.5)
0
where A(T) is the thermal conductivity, T; and r, are the temperature and radius of the channel respectively,
R is the radius of the discharge chamber,

P = al*n®ryF (pg) (6097t 1.6)

I is the amplitude of the current in the inductor, n is the number of inductor windings per unit length, o=
0 (9g) is the electrical conductivity, 8, = ¢ (2 no,0)™: is the thickness of the skin-layer, c is the velocity
of light in vacuo, w is the angular velocity of the electromagnetic field, and

_ 15 ber (po) ber’ (po) -+ bei (po) bei’ (po)
F o) = V2 ber (po) --- bei? {gg)

Po = V_TZ ro/8,

As possible values of ry and 9, must satisfy (1.2), variations in (1.1} and (1.3) must be carried out
along the curve gy(ry), determined by relation (1.2). Then it follows from (1.4) that for condition (1.3) to be
satisfied by a small deviation 69;Z 0 from the true value there must be a corresponding deviation éry= 0.
However, this is not always achievable for Joule dissipation power, as determined by Eq. (1.6). In fact, for
po>>1 the right-hand side of (1.6) approaches

P = al*n’ry (0ido)™ ~ o0y .7

It follows from this that for condition (1.1) to be satisfied when the electrical conductivity o () always
increases with temperature a positive variation §6 must correspond to a positive variation of éry and vice
versa, which contradicts (1.2)-(L.4). It was just this circumstance that led to the contradiction in [1]. Since
as shown in [10], condition (1.1) is a consequence of the extremality of entropy production, the extent to
which we apply the principle of minimum entropy production in the description of a high-frequency discharge
should be analyzed.

2. In nonequilibrium thermodynamics [11] the variational principle of minimum entropy production
is well known. Entropy production is regarded as a functional and the problem of finding extrema of this
functional is posed. In a steady state of any thermodynamicalsystem, entropy production is an extremum
because the Lagrange—f:uler equations for the corresponding variational problem are the equations that
describe completely the steady regime of this system. In this sense the principle of minimum entropy pro-
duction is simply equivalent to a system of equations describing a steady state of a thermodynamical sys-
tem. If equations emerge, as the result of a variation of the entropy production, that do not describe a
steady process completely (for example, certain steady-state equations are missing), then the principle of
minimum entropy production is invalid for such thermodynamical systems. '

In particular, it has been shown in [9] that under specific assumptions for a thermodynamical system
that is able to conduct an electric current and is situated in a potential electric field (for example, a con-
stant-current arc) the result of solving the variational problem for the extremum of entropy production is
the emergence of the Elenbaas—Geller energy equation and the steady-state equation for the conservation
of charge. These equations, together with Ohm's law, which is brought into the thermodynamics of irre~
versible processes as a phenomenological equation, completely describe both the electrodynamics and the
heat exchange of the column of a steady-state constant-current arc. Therefore, under certain conditions
a variational treatment of the steady-state regime of an arc discharge, based on the principle of minimum
entropy production, seems possible.

It is easily shown that in the calculation of the extremum of entropy production for a thermodynamical
system in an alternating electromagnetic field the same equations emerge as in the case of a constant-cur-
rent arc, and Maxwell's system of equations for a continuous medium, governing the interaction of the alter-
nating electromagnetic field with the thermodynamical system, does not appear. Therefore the principle of
minimum entropy production is invalid for a high~frequency discharge.
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Now the meaning of the contradiction, originating in {1], becomes clear. Roughly speaking, power dis-
sipation is determined mainly by the electrodynamics of the discharge, which does not derive from the prin-
ciple of minimum entropy production.

3. For a correct variational description of a steady high-frequency discharge, it is necessary to con-
struct some functional such that the condition for its extremum yields a complete description of the steady-
state regime of the discharge. As the construction of a functional whose extremality would be equivalent to
the complete system of Maxwell's equations and the equations of heat conduction, it is necessary to separate
the electrodynamic part of the problem from the energetical part. Then a variational approach to the prob-
lem is found to be possible.

Consider the functional
R {r)

V6] = S K 9 >2_;E\* (r) ]ze§ s(B)dG]rir 3.1)

dr

and let E* (r) be the actual (nonvaried) distribution of the complex amplitude of the intensity of the electric
field that becomes established in the steady-state regime of a high-frequency discharge. We shall seek the
extremum of this functional

0V =20 8.2
Condition (3.2) is equivalent to the Lagrange—Euler equation
1 d d 1 5
R (RO OIS ©-3)
with the boundary conditions
0
—-00=0 E.4)

at r=0, r=R.

Equation (3.3) is the equation for energy balance in a steady cylindrical high-frequency discharge at
high pressure under the condition that heat transfer occurs only through radial heat conduction. The bound-
ary conditions (3.4) also correspond to the case under consideration under the condition that the walls of
the discharge chamber are maintained at a constant temperature, which can be set equal to zero with no
restriction of generality.

Thus, as the extremum of the functional (3.1) for a fixed distribution E*(r) yields the actual steady
temperature distribution, the latter can be found immediately from (3.2) by direct methods of variational
calculus. )

We shall show how to apply the proposed variational principle for the description of the channel model
of a high-frequency discharge.

In the channel model of a discharge, radial distributions of temperature and electrical conductivity
of the forms

{607 0<r<r
O(r) =

8 (In R/r) (I Riry)Y, ro <r < R 3.5)
607 0<r<r0
G(r):{o, ro<r< R

are considered.

The distributions (3.5) correspond to a cylindrical, electrically conducting channel of radius r; at a
constant temperature ¢, surrounded by a tubular zone (ry< r< R) through which heat release from the chan-
nel is accomplished.

Inserting (3.5) into 3.1), we obtain
B Ty
V (1o, 60) = 6,2 (In Rjry) ™ — <§ 5(0) d6> (1250 rdr) (3.6)

Thus, in the channel model approximation the correct functional V[g] is represented in the form of a
function of two variables, r, and g,. Condition (3.2) is now equivalent to the relations
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[ = o= e
where gg* and rg* are the actual channel parameters of the discharge, which are subject to determination
by means of (3.7). We remark that in the variational method indicated here it is not required that the varied
parameters g, and ry be related to each other through condition (1.2), which was the direct cause of the con-
tradiction in [1].

It follows from (3.6), (3.7) that

To*

20,* (In R/ry*)™" — 5,* \ | E* () Prdr =0

) (3.8)
Bp*
0y*2 (ro*InPR/r*) ' — ro* | E* (rp*) 2 S 5(6)d8 =0 3.9)
0
If
P = { o 0L onpar (3.10)

0

is taken into account, then with the aid of (1.4) relation (3.8) can be given a visualizable physical interpre-
tation — this is the condition for the integrated energy balance of the discharge, similar to (1.2).

With the help of (3.8) and (3.10) relation (3.9) can be reduced to the form

8o*

{ 5(0)d0 = e (3.11)

) Rre¥e | B* (ro%)

For the case of a thin-skin layer (ry* > §y*), for which conditions for the validity of the channel model
are fulfilled most accurately (in the discharge zone volumetric energy release is absent), the square of the
electric field strength at the boundary of the channel is given by the formula (see, for instance, [12])

[E*(ro*) [P = 21702 (5,%5,%)% . 3.12)
Then, inserting (L.7) and (3.12) into (3.11), we obtain

*
)

§ 5(6)d6 =1/ (’T")Z (3.13)

<

Relation (3.13) determines the channel temperature gg* in its dependence on the number of ampere-
turns of the inductor as affiliated with the known function ¢ () and, with an accuracy up to a factor equal to
two, it coincides with the exact integral obtained in [3]. If the electrical conductivity depends on the tem-
perature according to Boltzmann's law ¢ ~ exp (—A/2kT) and A>2KT (A is the ionization potential of the
working gas and k is Boltzmann's constant), the integral in (3.13) can be evaluated approximately (see {13]).
As a resull the solution, obtained by the variational method, coincides with logarithmic accuracy with the
results of [3, 4], which are based on a direct integration of the equations governing the steady regime of a
discharge.

4. The method described above makes it possible to take account of the influence of the emission of
radiation on the parameters of a high-frequency discharge. In the volumetric radiation approximation the
equation of energy balance for the steady-state regime of a high-frequency discharge has the form [2]

1 a (r de>+iﬁ>%’i<ﬂ~¢)(e)=0

@.1)

where ®(g) is the volumetric density of the power loss due fo radiation.

It is easily verified that Eq. ¢.1) is the Lagrange— Fuler equation for the variational problem on the
extremum of the functional

a(r) 8(r)

U 6] =§[<—‘£>2—|E* P §a@do+2 | @@ as]rar @.2)
0 Q [}

dr

where, as formerly, E*(r) is not varied,
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Because of the sharp temperature dependence of &(8),emission of radiation takes place mainly out of
the channel. Therefore it is natural to assume that '

DBy =d,, 0r<ry “4.3)
q’“’)z{o, r<r <R,

Using the gpproximation (.3) and applying the procedure described in Sec. 3, we obtain

U [ry, 8] = 8,2 (In R/ry)™" — (§ 5 (6) de) (\ [E* () |2 rdr) o % ® (6) 46 @.4)
0 (1] [}

It now follows from relation (3.7) that

Te*

20,* (In R/ry*)™ — g* § [ E*(r) P rdr 4 ry**Dy* = 0 @.5)
q,

9,*
8% (ro* I2R/rg*)™ — | B* (rg®) [ 1o* { 0(8)d0 + 2ry* § ©(6)dd =0 (@.6)
[}

0

1t is clear that when radiation losses are neglected, relations ¢.5) and (4.6) pass over to relations
{(3.8) and (3.9), respectively.

As the power loss per unit length of the channel due to radiation is
Nrad = J'I:T‘O*z-DO* (4.7)

in the channel model approximation, relation @.5), like {3.8), represents the condition for overall balance
of the energy of the discharge

P =N+ Npg 4.8)

The system of transcendental equations (.5), 4.6) determines the temperature g;* and the radius
ry* of the discharge as functions of the number of ampere-turns of the inductor.

In [8] the conclusion is reached that a satisfactory treatment of the channel model of a high-frequency
discharge is impossible without taking account of energy release outside the channel. As is evident from
the results of the present paper, construction of a channel model of a high-frequency discharge, even with
radiation losses taken into account, is possible on the basis of a correct variational approach, in contrast
to the approach followed in [1].

In conclusion the author thanks Yu. P. Raizer for the formulation of the question concerning the con-
tradiction in [1} and many useful discussions.
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